ARI
I BUCHI NERI PDF Stampa E-mail
Scritto da <a href="http://www.arimelfi.it/cms/index.php?option=com_comprofiler&amp;task=userProfile&amp;user=76&amp;Itemid=93">IK0ELN</a>   
Giovedì 11 Maggio 2017 18:53

 

logo

I BUCHI NERI,

Osserviamoli con la radio

>>>>> 0 <<<<<

fig. 01  buco neroGrazie alla scoperta delle Onde Gravitazionali, avvenuta il 14 Settembre 2015, oggi si ha la certezza della presenza dei Buchi Neri nell’Universo. Ma la previsione di questi oggetti celesti rientravano nella teoria della Relatività Generale di Albert Einstein già dall’inizio degli anni sessante, attraverso un modello più elaborato della Legge di Gravità di Isac Newton; la quale mette maggiormente in evidenza la gravitazione come una deformazione della strutture geometrica dello spazio/tempo. Ma che cosa è un buco Nero? Dunque, un buco nero è un oggetto celeste in cui la forza di gravità è talmente forte che nessuna altra forza vi si può opporre, generando la formazione di una singolarità nella quale la densità è infinita, perché tutta la materia che lo costituisce è compressa dalla forza di gravità (Fig.1). Una compressione simile ad un barattolo “sottovuoto spinto” ma senza il coperchio, circondato da una superficie sferica definita Orizzonte degli Eventi, dove la materia, spiraleggiando intorno, cade all’interno e dove dall’interno non può sfuggire nulla, nemmeno la luce, tanto meno la materia o altro tipo di energia.fig. 02 stephen hawking Va aggiunto che il raggio dell’orizzonte degli eventi accresce con la massa del buco nero; così che, quanto più grande è il raggio, tanto più massivo sarà il buco nero; e poiché il buco nero non lascia sfuggire niente dal suo orizzonte degli eventi, è davvero impossibile avere informazioni sullo stato fisico dell’interno. Tuttavia un buco nero brilla di luce propria dovuta alla emissione della Radiazione di Hawking (La radiazione di Stephan Hawking [Fig.2] è una radiazione termica emessa dai buchi neri a causa degli effetti quantistici) la quale risulta essere in campo elettromagnetico in equilibrio termico, permette di assegnargli la temperatura della radiazione. Capita a volte che ad ampliare il suo raggio, provvede la fusione con un altro buco nero; così come avvenuto tra un enorme buco nero rotante, ed un altro di massa più ridotta (Fi.3). fig. 03 fusione di due buchi neriInfatti l’abbraccio di questi voraci cannibali cosmici ha dato luogo alle onde gravitazionali di recente scoperta. Ma quale è l’origine dei buchi neri? Per capire bene come si formano i buchi neri bisogna fare riferimento ad una categoria di stelle super massicce: le Superova (Fi.4). Per cui cominciamo con il dire che la vita di una stella è una continua contrazione ed espansione; e quando la stella si contrae gli elettroni vengono schizzati fuori dagli atomi, continuando a contrarre il nucleo. fig. 04 stella supernovaPer cui ad un certo punto si raggiungono densità così elevate che si innesca il processo di decadimento beta inverso; cioè i protoni e gli elettroni si fondono e formano neutroni e neutrini. E poiché i neutrini sono molto leggeri ed energetici, vengono espulsi dalla stella. Il nucleo di neutroni è così pesante e compatto che la materia continua a cadergli sopra. Contemporaneamente si verifica un’onda d’urto che si mescola alla materia, la quale continua a cadere sulla stella, fino a che si arriva all’esplosione della stella. Nasce così una Supernova; un oggetto luminosissimo, più luminoso della galassia che la ospita. Ma cosa rimane al centro? Al centro può rimanere una stella di neutroni o un buco nero. Chiariamo subito che la stella di neutroni avviene se il nucleo centrale ha una massa inferiore a circa tre masse solari; viceversa, se la massa è superiore, la forza gravitazionale non permette di creare una struttura in equilibrio e la materia continua a collassare. In pratica, appena la materia entra in questo vortice, comincia a spiralizzare intorno fino ad essere inghiottita. La superficie spiralizzante prende il nome di orizzonte degli eventi; mentre il buco nero è l’oggetto che è collassato al di sotto di questa superficie. Con questo sistema si è pure capito che al centro della Via Lattea c’è un buco nero super massivo; ovvero un buco nero che contiene masse di milioni di masse solari. Ma essendo inaccessibile all’osservazione diretta, non siamo in grado di stabilire qual è la fisica che regola la materia in quelle condizioni così estreme di densità è di pressione all’interno. Nemmeno in banda radio?

fig.-05-h.o.t._1_

E qui corre in aiuto la Radioastronomia. Infatti, è allo studio un progetto che vede un consorzio di otto radiotelescopi sparsi sulla Terra, tutti configurati in array attraverso il sistema VLBI (very large baseline array) che diventeranno una potente antenna delle dimensioni della Terra. Il progetto di ricerca prenderà il nome di EHT, Event Horizon Telescope (Fig.5) e punterà le antenne verso il centro della Via Lattea, osservando il buco nero che si cela nel nucleo della nostra galassia. Per cui se questo tentativo avrà successo, le suggestive immagini radio che verranno pubblicate tra la fine di quest’anno e gli inizi del 2018, potrebbero consentire ai radioastronomi di conoscere meglio Sagittarius A* e il buco nero supermassivo della Via Lattea. Ma soprattutto confermare le previsioni di Einstein!

 

Dott. Giovanni Lorusso (IK0ELN)

Ultimo aggiornamento Giovedì 11 Maggio 2017 19:04